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Assessment of Folsom Lake Response to Historical and Potential

Future Climate Scenarios  

Abstract

An integrated forecast-decision system for Folsom Lake (California) is developed and used to

assess the sensitivity of reservoir performance to various forecast-management schemes under

historical and future climate scenarios.  The assessments are based on various combinations of

inflow forecasting models, decision rules, and climate scenarios and demonstrate that (1) reliable

inflow forecasts and adaptive decision systems can substantially benefit reservoir performance

and (2) dynamic operational procedures represent effective climate change coping strategies. 

1.  Introduction

What are the conditions under which inflow forecasts can improve reservoir

management?  What is the value of adaptive forecast-decision systems relative to traditional

reservoir operating rules? Are climate model predictions potentially useful for reservoir

management? What are the potential impacts of climate change on reservoir performance?  Can

such impacts be mitigated by adaptive forecast-decision systems?  These are the questions

addressed in this article using as a case study the Folsom Lake on the American River in

California. 

Our approach is to conduct detailed comparative assessments using various combinations

of inflow forecasting models, decision rules, and climate scenarios.  Relevant recent studies

aiming to quantify the impacts of climate change on managed water resources systems include

Chao, 1999, and Lettenmaier  et al., 1999, among others.  These assessments assume that

reservoirs are operated using traditional release rules and simulate their response under present

and future climate scenarios.  In this work, adaptive and dynamic decision schemes are shown to

have distinct advantages over traditional practices, their value increasing with climate change. 

These findings are consistent with those of Georgakakos et al., 1998a.  The value of different

forecast forms is investigated, demonstrating that forecast uncertainty characterization is
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important for reservoir management.  Forecast uncertainty is quantified using likely inflow

realizations (forecast ensembles), and a new approach is developed to incorporate it within the

decision system.  A new inflow forecasting scheme is introduced and evaluated together with the

forecasting schemes described in the companion article of Carpenter and Georgakakos, 2000. 

The complexity and data needs of the forecasting models vary, including models based on

streamflow, models based on watershed hydrology, and models also based on climate (General

Circulation Model) predictions (Georgakakos et al., 1998b).  

       In the following sections, the modeling framework is outlined first and its individual

components are described; subsequently, the assessment findings are discussed for the historical

and a potential future climate.       

2.  Modeling Framework

Figure 1 depicts the modeling framework used in this assessment.  The principal modules

pertain to (a) inflow forecasting, (b) reservoir management, and (c) system assessment.  The

inflow forecasting options to be tested include operational forecasts, historical analog ensemble

forecasts, hydrologic ensemble forecasts, GCM-conditioned hydrologic ensemble forecasts, and

perfect forecasts, all of which are further discussed in the following section.  Reservoir

management is based on a decision system which includes three coupled  models pertinent to

turbine load dispatching, short-range energy generation scheduling (hourly time steps), and

long/mid-range reservoir management (daily time steps).  The assessment process quantifies the

response of the system over a long time horizon, assuming that reservoir releases are made based

on the use of a particular combination of forecast-control  models.  The assessment is performed

for three different inflow realizations: (a) a historical inflow realization from 1965 to 1993, (b) a

potential inflow realization from 1993 to 2050 generated by the General Circulation Model

(GCM) of the Canadian Center for Climate Modeling and Analysis assuming no CO2 increase,

and (c) a potential inflow realization from 1993 to 2050 generated by the same GCM assuming

1% CO2 annual increase.      

In the following sections, we first describe or provide references for the previous models 

and then discuss the results of the assessment.  
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(Figure 1: Folsom Forecasting/Decision/Assessment Modeling Framework)

 

3.  Inflow Forecasting Models 

Inflow forecasting is critical for reservoir management.  Reliable multi-lead forecasts

could increase energy generation, mitigate severe droughts, and provide reliable flood protection. 

However, forecast benefits depend on the skill of the forecasting models as well as on the form in

which forecast information is presented to and used by the  decision models and management

processes.  To assess the effectiveness of coupled forecast-decision schemes in a changing

climate, several forecasting models of varying complexity were evaluated. 

The “Operational Forecasts” scheme is a three-month inflow forecast sequence

(consisting of a single trace) developed by the reservoir management authority at the beginning

of each month.  These sequences will herein be assumed as representative of those used in

practice.   

The Historical Analog Extended Streamflow Prediction (Analog ESP) forecasts are based

on information contained in the historical streamflow record.  The underlying premise of this

model is that streamflows materialize as a result of a nonlinear hydro-climatic process orbiting

around an unknown attractor set.  Although this set is not easily definable, this premise leads to

the following conjecture: If the process is presently at a certain point in its orbit, its position in

the near future can potentially be inferred by observing the movement it experienced on similar

occasions in the past.  More specifically, streamflows are the result of the rainfall-runoff process,

and the values they assume over a certain time period depend on various hydro-climatic factors

including watershed rainfall, temperature, and soil moisture conditions. Thus, if the climate-

watershed system tends to revisit the neighborhood of certain conditions (states), it should also

tend to generate similar streamflow patterns.  

In keeping with this intuitive conjecture, the historical analog ESP model “searches” the

historical record and selects several inflow traces which, at some time in the past, have started

from conditions similar to those of the current inflow sequence.  Each one of these traces is a

possible future realization of the inflow process, and all together constitute a set on which to base

probabilistic, multi-lead forecasts.  

Thus, suppose that the present time is April 1st, and the previous days’ inflows were W1,
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W2,...,Wn , where subscript “1” represents the last day in March, “2” the day before that, etc., and

n is a parameter related to the process memory.  Namely, [W1, W2,...,Wn] is the most recent

inflow sequence to April 1st.  The next step in the implementation of the analog ESP model is to

retrieve all inflow traces of the same month and date as the W1, W2,...,Wn  from the historical

record and compute their Euclidian distance, Ej , from the current sequence:

where Wi 
j 

 is the historical inflow of year j at the same calender date as Wi; m is the number of

years in the historical record; and Ej measures the proximity of [Wi
j , i=1, 2, ..., n] to the most

recent inflows [Wi , i=1, 2, ..., n].  A small value of Ej implies that the Wi
j sequence is in the

neighborhood of Wi . The inflows following Wi
j are known (as part of the historical record) and

can be used as the forecasts of the inflows following Wi.  To generate multiple forecast traces,

one can rank the Ejs  from smallest to largest, select the top portion of the ranked list, and use the

corresponding historical inflows following Wi
j as possible future inflow realizations.  It is noted

that several other ways may be used to measure the proximity of the historical to the most recent

streamflow sequences.    The reasons for using this particular scheme are that it is easy to

implement and it has been effective in several other applications.   

The analog ESP model has two parameters: (1) the length of the historical matching

period [n], and (2) the number of inflow realizations.  In this study, sensitivity analysis showed

that model forecasting ability is optimized when the historical matching period is from three to 

seven days, and the forecast ensemble includes 10 to 15 inflow realizations. The model

forecasting ability was measured by the criteria described below.

An example of a 60-day forecast ensemble is shown on Figure 2.  Whether such forecast

ensembles contain any useful information for reservoir management depends on their attributes

of bias, reliability, and skill.  A forecast ensemble is biased if its median (or mean) consistently

over- or under-estimates actual inflow.  A forecast ensemble is reliable if it contains the actual

inflow sequence most of the time.  Forecast skill is related to the range of the ensemble.  The

most desirable forecast ensembles are those that maintain a narrow (but reliable) range for long

lead times.  A series of retrospective simulations were conducted to assess the forecast attributes

Ej � ˆ
n

i�1
[ Wi � Wi

j]2 , j � 1 , ... , m (1)
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of the analog ESP model. 

In these simulations, a forecast ensemble similar to the one on Figure 2 was generated for

each day of the 1965 to 1993 historical period (29 years), with the actual inflow sequence

excluded from the ensemble.  At the end of the simulation process, 29 forecast ensembles (each

consisting of 15 realizations and extending over 60 days) were generated for each calendar day of

the year.  For a particular calendar day and lead time, forecast bias was estimated by first

computing the median (across the ensembles) difference between the ensemble median (across

the ensemble traces) and the actual inflow.  This quantity was then normalized by the median of

the historical inflows.  Forecast reliability was estimated as the percentage of the ensembles that

contained the actual inflow.  Lastly, forecast skill was measured by the ratio of the forecast

ensemble range to the historical inflow range.  The ratio distribution (29 sample points) was

characterized by its minimum, maximum, and mean values.  Figures 3 and 4 show these forecast 

measures for forecasts issued at the beginning of the first six months of the year when streamflow

volume is most significant.  The figures support the following observations: 

• For most months and lead times, forecast bias is less than 10% of the median flow.  The

results are especially good for March through June, while for January and February they

indicate that forecasts tend to underestimate inflow for short lead times.  Overall, the

analog ESP model provides fairly unbiased forecasts.        

• Forecast reliability ranges from 85 to 97% for all months and lead times.  This implies

that forecast ensembles manage to contain the actual inflows approximately nine out of

ten years. 

      

• The ratio of forecast to historical inflow range suggests that the model also exhibits

forecast skill.  This conclusion follows by the wide and consistent separation of the

minimum and maximum ratios as well as by the skewed position of the mean toward the

minimum ratio.  To put these results in perspective, complete lack of forecast skill would

be indicated by all ratios (minimum, maximum, and mean) being close to 100%, while

near-perfect forecasts would result in all ratios being close to zero.  As can be seen in the

figures, forecast skill varies with lead time but stays significant throughout the 60-day



7

forecast horizon.  The model performs particularly well in May.               

All three forecast attributes are very important for reservoir management.  Biased

forecasts would result in misestimation of reservoir levels; forecasts of low reliability would

cause frequent violations of minimum and maximum reservoir levels and releases; and forecasts

of low skill would fail to anticipate wet and dry periods and would not fully utilize the reservoir

regulation capability.  To be most useful in reservoir management, inflow forecasting models

should perform well with respect to all three criteria.  

The next two inflow forecasting models include more detailed representations of the

basin response to climate inputs.  The hydrologic ESP (H-ESP) uses a physically-based

representation of the Folsom watershed, while the GCM-conditioned ESP (GCM-ESP)

additionally assumes that GCM climate forecasts (from the GCM of the Canadian Center for

Climate Modeling and Analysis) are available and used as described by Carpenter and

Georgakakos (companion article).               

The last inflow forecast option, “Perfect Forecasts,” assumes perfect knowledge of the

upcoming inflows and is used to provide an upper bound of system performance.   

(Figure 2: Analog ESP Forecast Example (April 1st) 

(Figure 3: Analog ESP Forecast Statistics (January, February, and March) 

(Figure 4: Analog ESP Forecast Statistics (April, May, and June) 

4.  Decision Models 

The Folsom decision module is designed to support reservoir management decisions

pertaining to multiple time scales.  Specifically, this module consists of (a) a long/mid-range

control model with a horizon of 60 days and daily time steps, (b) a short-range control model

with a horizon of one day and hourly time steps, and (c) a turbine commitment and load

dispatching model pertaining to each hour.  The concept of this decision hierarchy for reservoir

management has been introduced by Georgakakos et al., 1997a,b,c, and its operational

implementation for actual reservoir systems are described by Georgakakos and Yao (articles in

review, Water Resources Research).  Thus to avoid duplication, in what follows we only provide
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a summary discussion, focusing on the formulation elements particular to Folsom. 

4.1  Turbine Dispatching Model 

Folsom’s hydropower station includes three turbines, each with a power range of 15 to

70.5 MW.  The turbine characteristic curves relate power generation to turbine discharge and 

hydraulic head as shown in Figure 5.  The purpose of the turbine commitment and load

dispatching model is to determine the most efficient plant operation (i.e., the turbine load

schedules) such that for a given hourly total outflow (from all active turbines, spillways, and

outlet conduits) power is maximized.  Reservoir levels and outflows are determined by the higher

decision levels and are inputs to this model.  In addition to solving the turbine commitment and

load dispatching problem, the model also generates a function that relates total power to reservoir

level and total release, under best efficiency plant operation.  This function (Figure 6) is

determined using dynamic programming (Georgakakos et al., 1997a), and is used by the short-

range decision model.  For a particular combination of reservoir elevation and total release,

Figure 6 provides the maximum possible power that can be produced by Folsom’s hydroelectric

facility.

 

(Figure 5: Folsom Turbine Characteristic Curves) 

(Figure 6: Best Efficiency Plant Power Function) 

4.2  Short-Range Decision Model

After scheduling the plant operation within each hour, the next level of decisions pertain

to the hourly energy generation scheduling (and reservoir release) during each day.  Depending

on power system requirements, this decision level should consider dependable capacity

commitments (hours during which the plant is committed to operate at capacity), minimum flow

requirements, and energy prices as a function of power demand.  Two common management

objectives are to maximize the value of daily energy (Georgakakos et al., 1997c) or to maximize

the daily energy itself (Georgakakos et al., 1997b) subject to all relevant operational

requirements.  The present study uses the second objective due to the unavailability of the
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Maximize
Qi , i�1,2 ,...,24�TD

{ gE [u , H ] � Pmax TD � ˆ

24�TD

i�1
P (Qi , H ) } , (2)

u � Qmax TD � ˆ

24�TD

i�1
Qi ,

Qmin @ Qi @ Qmax , i � 1,2 ,... ,24 .

(3)

marginal power generation cost curve of the power system to which Folsom contributes.          

Denoting u the total daily release; H the reservoir elevation at the beginning of the day;

TD the number of peak generation hours for that day; Pmax the total power capacity at reservoir

level H; Qmax the corresponding discharge (Pmax and Qmax are determined from the power function

shown on Figure 6 for elevation H); Qi the plant discharge for the ith hour of the day; Qmin the

minimum hourly release; P the optimal plant power generation function of Figure 6; and gE[u,H]

the daily energy generation, the short-term decision problem can be stated as follows: 

subject to

For a particular daily release u and reservoir level H (provided by the long/mid-range decision

model), the solution of the above problem yields the maximum daily energy that can be

generated subject to the stated constraints.  The solution can be obtained via an one-dimensional

dynamic programming algorithm. We note that elevation H is assumed to be constant because the

daily elevation variation can usually be neglected.  If significant level changes occur during the

day, then the reservoir water balance equation (hourly time steps) should also be included in the

constraint set.     

In addition to the optimal hourly generation and release schedule, the short-range decision

model also develops the optimal daily energy function by solving the previous problem for many

combinations of u, H, and TD.  Figure 7 shows a plot of this function for TD equal to zero.  The

optimal daily energy generation function is used by the long/mid-range decision model as
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S(k�1) � S(k) � u(k) � w(k) � e(k) A[S(k)] � d(k) ,

H(k) � H[S(k)] ,

k � 0,1 , ... ,N�1 ,

(4)

H min(k) @ H [S (k) ] @ H max(k) ,

k � 0,1 , ... ,N ,
(5)

described below.   

(Figure 7: Optimal Daily Energy Generation Function) 

4.3  Long/Mid-Range Decision Model

The short-range decision level addresses hourly operational decisions within each day

given a reservoir level and a daily release volume.  The purpose of the long/mid-range decision

model is to determine reservoir release and level sequences that satisfy Folsom’s long-term

objectives–flood control, hydropower generation, water supply, environmental protection, and

drought management.  This model has a control horizon of 60 days, thus combining long- and

mid-range features.  Reservoir level changes are incorporated through the water balance

equation:

where S(k) is the reservoir storage at the beginning of day k, u(k) is the total daily release, w(k) is

reservoir inflow, e(k) is the evaporation rate, A[S(k)] is the water surface area, d(k) is the water

demand, and N is 60 days (control horizon).  In the above equation, reservoir inflow is uncertain,

causing future reservoir storage to be uncertain too.  However, inflow forecast ensembles can

serve to quantify this uncertainty and define reliable reservoir operation policies. 

Reservoir level and release variables are constrained by physical capacity and operational

limitations: 
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u min(k) @ u (k) @ u max(k) ,
k � 0,1 , ... ,N�1. (6)

Prob[H [S(k) ] @ H min(k) ] @ εmin ,

Prob[H [S(k) ] A H max(k) ] @ εmax ,

k � 0,1 , ... ,N ,

  (7)

u max (k) � u max
Trbn(k) � u max

Splwy(k) ,

k � 0,1 , ... ,N�1 .
  (8)

where Hmin(k), Hmax(k), umin(k), and umax(k)  are lower and upper level and release limits.

In view of the inflow uncertainty, a more appropriate representation of the reservoir level 

constraints is as follows: 

where εmin and  εmax   are user-specified risk thresholds (e.g., 1% or 10%) at which reservoir level

would be acceptable to exceed its specified limits.  For Folsom,  Hmin(k) and Hmax(k) correspond 

to the lower and upper levels of the active storage zone, extending from 327 to 466 feet.  

The minimum release, umin(k), is set at 1000 cfs to accommodate downstream

environmental and water supply requirements, while the maximum release, umax(k), is taken as

the combined turbine and spillway outflow capacity, and depends on reservoir level as well as on

power generation limits.  It is noted that umin(k) could also accommodate seasonally variable

instream flow requirements that are better suited for environmental and fish and wild life

protection.  

Though the reservoir outlet structures can release at very high discharge rates (200,000 to

300,000 cfs), the cost of flood damage to the downstream areas (Figure 8) rises sharply for
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J � E { ˆ
N�1

k�0
{ α gH [S(k) ] � β gspl [u(k) ,S(k) ] � γ gfldmg [u(k) ]

� δ gH�trgt [S(k) ] � ε gE [u(k) , H (S(k) ) ] }

� ζ gH [S(N) ] � η gH�trgt [S (N) ] } .

(9)

outflows exceeding 115,000 cfs.

Folsom’s primary regulation objectives include flood protection, power generation, and

the provision of dependable downstream releases for water supply and environmental and

ecosystem protection (drought management).  From a long-range management standpoint, these

objectives would be optimized if the regulation policy realizes all of the following conditions: 

• Maintain reservoir level as high as possible (for hydropower and drought management); 

• Avoid excessive outflows (for flood protection and hydropower); and

• Meet minimum flow requirements (for drought management and hydropower).   

Some of these conditions are build into the long/mid-range control model through the

above-stated constraints [e.g., Constraint (6)], while the rest are incorporated through the

performance index (or objective function).  Thus, the rationale and role of the performance index

is to realize (to the extent possible) these desirable operational conditions.   The formulation is as

follows:       

E{ } denotes expectation with respect to the joint probability distribution of the reservoir inflows. 

 The first term enforces the requirement that reservoir levels should be kept within Hmin and  Hmax

[Constraints (7)].  Function gH[ ] has the continuously differentiable form introduced by

Georgakakos et al., 1997a, assigning a high penalty to reservoir level fluctuations outside the

permissible range.  The second term concerns reservoir spillage.  Spillage is defined as release

exceeding turbine capacity but being less than  umax(k) [Equation (8)].  This term  adds a

quadratic penalty when spillage occurs and thus favors sequences that avoid it.  In addition to the

spillage penalty, the third term penalizes releases over 115,000 cfs that accrue flood damage. 
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The functional form is a smooth approximation of the flood damage function of Figure 8.  The

fourth term aims at maintaining the reservoir near the top of the conservation pool [Hmax(k)] to

conserve water, enable recreation activities, and optimize power generation efficiency.   The fifth

term is the daily generation function derived by the short-range control model (Figure 7), with a

negative sign to conform to a minimization formulation.  Lastly, the sixth and seventh terms

relate to the reservoir levels at the end of the control horizon and are functionally similar to the

first and fourth terms. 

Penalty parameters α, β, γ, δ, ε, ζ, and η are used to weigh the significance of the various

performance index terms and are distinguished in three clusters.  Parameters α, β, γ, and ζ impose

the highest weights to guide the control algorithm to first identify sequences which meet the level

constraints and avoid spillage and flood damage.  Parameter δ assigns an intermediate weight to

limit the previous sequences to those that maintain high feasible reservoir levels.  Lastly,

parameter ε introduces the lowest relative weight to further restrict the identified sequences to

those that additionally optimize power generation efficiency.  The actual numerical values of

these parameters are selected so that the terms in the different clusters differ by a factor of 100. 

Sensitivity analysis shows that these specifications identify release policies that generate

desirable reservoir sequences.                    

The control problem formulated here is solved using the Extended Linear Quadratic

Gaussian (ELQG) control method which was developed by Georgakakos 1989, 1993,

Georgakakos et al., 1997a,b,c, and Georgakakos et al., 1998a.  ELQG is an iterative

optimization procedure starting from an initial control sequence {u(k); k = 0, 1, 2, .., N-1} and

subsequently generating increasingly better sequences until convergence. Convergence is

achieved when the value of the performance index cannot be reduced any further.  ELQG is

reliable, computationally efficient, and especially suited for uncertain, multi-reservoir systems.

For a more detailed discussions of the ELQG algorithmic features, the reader is referred to the

previously cited references.

(Figure 8: Food Damage Curve) 

4.4  Uncertainty Characterization

ELQG is an optimization method that constructs the storage probability distributions
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u(k) � Λ(k) S(k) � λ(k)

k � 0,1 , ... ,N�1 ,
(10)

using a number of statistical moments, usually the mean, covariance, and possibly third order

moments (Georgakakos, 1989).   These probability distributions are then approximated by

normal or log-normal functions (or other probability models as appropriate) and used to establish

the feasible solution space.  Though this procedure generally works well, some discrepancies still

arise, especially in cases where control (release) constraints alternate between a binding and a

non-binding status, changing the shape of the storage probability distributions.  To correct for

these discrepancies, Georgakakos and Yao, 2000 (article in review), introduced an ELQG

modification that ensures the fidelity of the reliability constraints (7) through a full uncertainty

characterization.  We next discuss the main idea of this modification.     

As part of the solution process, ELQG generates linear approximations of the problem’s 

feedback control laws {u(k) = µk[S(k)],  k=0,1,...,N-1}: 

where {Λ(k), and λ(k), k=0,1,...,N-1} are control gains computed analytically.  The idea is to use

these approximate linear feedback laws together with the inflow forecast traces to generate

possible storage (elevation) realizations over the control horizon.  For each inflow trace, this

computation can be performed efficiently by substituting the linear feedback functions (10) into

the system dynamics (4) and iterating in time. Repeating the process for all inflow traces in the

forecast ensemble, several storage (elevation) realizations can be computed and used to

characterize the entire probability distribution for all time periods.  Georgakakos and Yao, 2000,

discuss the details of this approach and demonstrate (through Monte Carlo analysis) that it

provides reliable characterizations of the storage probability distributions.  Figure 9 shows the

reservoir elevation and release ensembles that may materialize over a period of two months as a

result of decision process and the inflow ensemble of Figure 2.  In this run, the regulation

objective is to maintain high reservoir levels, ensure that 90% of them are below 466 feet (the

upper elevation limit), generate as much energy as possible, minimize spillage, and meet the

downstream flow requirements.              



15

In an operational application of the decision system, the release derived for the first day

would be implemented, and a new run would be performed at the beginning of the following day

after updating the inflow forecasts and reservoir level.  This sequential operation would ensure

that decisions are always made using current information. 

Figure 9 exemplifies the importance of good inflow forecasts.  Forecast bias, reliability,

and skill directly affect the location and shape of the possible reservoir level and release

ensembles, and thus enhance or undermine the effectiveness of the decision process.  The figure

also illustrates the objective of the decision system.  The objective is to create reservoir level and

release ensembles desirable in shape as well as in location. 

(Figure 9: An Example Run of the Folsom Decision Model) 

  

4.5  Decision Model Linkages

The three models of the decision system constitute a multilevel control hierarchy with an

operational flow that follows two directions: The lower level models are activated first to

generate information that is used by the upper levels regarding performance functions and

bounds.  In the course of this upward flow, the decision system simulates the Folsom response

for various hydrologic and water use scenarios, selecting those that optimize system

performance.  Once the most desirable policies are identified, the control levels are activated in

the reverse order to generate the best turbine hourly sequences and loads implementing these

decisions consistently across all relevant time scales.  The decision system is designed to operate

sequentially, at the beginning of each day, continually updating its release policies in keeping

with the most current inflow forecasts and operational conditions.       

The Folsom decision support system (Folsom DSS) is implemented within a user-

friendly, PC-based interface and can be used for planning and operational purposes.

5.  Assessment Model
The last element of the Folsom DSS (Figure 1) is the assessment model.  Its purpose  is to
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quantify the Folsom response for a specified inflow sequence, streamflow forecasting scheme,

and operational policy.  The assessment model replicates the sequential operation in which the

decision system is designed to work in practice.  Thus, at the beginning of each day in the

assessment period, the inflow forecasting scheme is invoked first to generate a forecast ensemble

for the upcoming inflows.  As discussed, a good forecast ensemble has the potential to fully

characterize the uncertainty of future inflows.  However, this information may or may not be

utilized, depending on the nature of the management system.  If, for example, reservoir release

policies are derived by deterministic management schemes (as are most current reservoir

operating rules relating water level to release), the inflow ensemble is usually reduced to a single

time sequence such as the median or the average trace, and the uncertainty implied by the

ensemble is ignored.  In this work, we will consider and evaluate both deterministic and full

ensemble forecasts.    

Next, the decision system uses the forecast information to determine the most desirable

reservoir release sequences over the forecast-control horizon as described in the previous

sections.  The response of the reservoir is then simulated for the current day, and the process is

repeated at the beginning of the next day.  At the completion of the forecast-decision-simulation

process, the program generates sequences of all relevant system performance measures including

reservoir levels, releases, energy generation, flood damage, and low flow violations. These

sequences can be used to compare the benefits and consequences of various inflow scenarios,

forecast-decision configurations, and operational policies.  For example, Figure 10 shows the

reservoir level and release sequences that would result over the 1965-1993 historical time period

under (a) the “Operational Forecast” option and a decision rule derived from current

management practices (to be discussed in the following section), and  (b) the “Perfect Forecast”

option and the Folsom DSS.  These different scenarios can be viewed as two extreme cases, with

the former using heuristic forecasts and fixed decision rule curves and the latter using perfect

forecasts and adaptive decision policies.   The figure shows that the heuristic management

scenario keeps lower reservoir levels and avoids flooding, but it also causes minimum flow

violations and generates about 18% less energy.   By contrast, the adaptive scenario uses the

forecasts to derive dynamic release policies drawing the reservoir down in anticipation of high

floods and allowing it to refill as flood waves pass.  As a result, flood damage is avoided,

reservoir levels and energy generation are higher, and minimum flow requirements are met
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always.  Perfect forecasts, however, are unattainable, and the adaptive scenario can only serve to

define an upper performance limit.  A question of practical interest is “How close can Folsom get

to this optimal performance using realistic forecast procedures and adaptive management

schemes?”  This question is taken up next. 

(Figure 10: Example Runs of the Folsom Assessment Model) 

  

6.  Historical Climate Assessments 

Assessments for the 1965 to 1993 historical period were performed for various forecast-

decision model combinations.  The results on Table 1 were obtained using a simplification of the

current decision rule coupled with three different forecasting models.  The decision rule (which is

shown on Figure 11 and will be referred to as “rule curve”) sets high reservoir level targets for 

the dry season (from June to October) and lower level targets for flood-prone winter and early

spring.  In operational practice, a different target curve is selected depending on the available

storage at three smaller upstream reservoirs.  The simplification used herein is that the same

upstream storage availability is assumed throughout the assessment horizon, and curve switching

is not permitted.  However, assessments are performed for all four rule curves.  Inflow forecasts

are obtained using the operational forecast, analog ESP, and perfect forecast schemes.

Table 1 reports model performance relative to energy generation, energy value (based on

1995 California monthly energy prices), spillage (release volume in excess of turbine capacity),

minimum flow violations, and flood damage.  Comparing the results for different rule curves, we

note that all four avoid flood damage.  However, the curves corresponding to 100 and 130

thousand acre feet (TAF) of upstream storage lead to minimum flow violations.  This happens

because the prescribed drawdown cannot always be refilled by the end of the wet season, leaving

the reservoir vulnerable to droughts. (The reservoir level and release sequences corresponding to

the 100 TAF rule curve are shown on Figure 10.)  With respect to energy generation, the rule

curves with higher reservoir levels perform better, increasing energy revenues by approximately

0.8 to 1.8 million dollars per year.  Considering that no rule curve causes flood damage, it can be

concluded that the rule curve corresponding to 200 TAF of upstream storage performs best.
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Comparing the results for different forecasting options, we note that model performance

is not sensitive to forecast quality.  The reasons for this are that (1) the rule curves are overly

conservative relative to flood control and (b) the dominant decision factor is the position of the

reservoir relative to the rule curve.  Thus, even perfect inflow forecasts do not accrue appreciable

improvements. 

The results on Table 2 were obtained using the Folsom DSS and various forecast schemes

including the operational forecasts, analog ESP, hydrologic ESP, GCM-conditioned ESP, and

perfect forecasts.  The reliability parameter indicates the type of forecast information utilized by

the decision system.  The “deterministic” and “50%” indications imply the use of a  single

sequence.  For the ESP schemes, this sequence corresponds to the median trace.  The “90%”

indication implies the use of the full forecast ensemble and a probabilistic tolerance threshold of

90% for the reservoir level constraints (7).          

The assessment results support several notable conclusions.  First, the full forecast

ensemble cases consistently outperform the deterministic forecast cases (with the exception of

the perfect forecasts).  More specifically, the full forecast ensemble methods increase energy

generation by 11 to 17 GWH per year (2 to 3% increase), increase energy revenues by 1.3 to 1.8

million dollars per year (also a 2 to 3% increase), decrease annual spillage by 50%, and decrease

flood damage by 622 to 841 million dollars.  These improvements occur because forecast

ensembles forewarn the decision model of the potential inflow range, helping it to avoid

excessive releases while maintaining high reservoir levels.  Thus, inflow forecast ensembles

coupled with stochastic dynamic management schemes can substantively improve reservoir

management.  By contrast, deterministic forecasts provide incomplete information for future

inflows and (in the long term) lead to over-confident and risky management policies.   

         The differences among the forecast ensemble methods (cases labeled 90%) are related to

their attributes of bias, reliability, and skill.  The results show that the GCM-conditioned ESP

outperforms the hydrologic ESP, with the former incurring 114.7 million less flood damage than

the latter.  Thus, in Folsom’s case, climate information helps extend the foresight of hydrologic

forecasts and improves reservoir management.  Both models, however, exhibit lower forecast

reliability than the analog ESP model which manages to eliminate flood damage, spill less, and

generate an additional 2 to 4 GWH per year.  On the other hand, the results for the 50% cases

show that the GCM-conditioned ESP performs somewhat better than the analog ESP and
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hydrologic ESP, due to less forecast bias.  Thus, although physically-based models have the

potential to improve forecast accuracy (especially for conditions outside their calibration range),

they do not necessarily improve reservoir management unless their forecast ensembles exhibit

high reliability.   Compared to the “perfect forecast” case, the full ensemble analog ESP

generates only 4% less hydropower and is equally effective with respect to flood protection.    

Comparing the results of Table 2 with those of Table 1, we conclude that dynamic

decision schemes using reliable forecast ensembles can substantively improve reservoir

management.  Specifically, the Folsom DSS using analog ESP forecasts generates 55 GWH per

year more energy than the 200-rule curve, increasing the annual energy revenue by 4.7 million

dollars (an 8.9% increase).  Both schemes fully avoid flood damage and always meet the

minimum flow requirements.  

(Figure 11: A Schematic of Folsom’s Rule Curve) 

7.  Future Climate Assessments 

A future climate/hydrology scenario for Folsom was generated using the GCM of the

Canadian Center for Climate Modeling and Analysis, assuming a 1% annual CO2 increase

(Carpenter and Georgakakos, companion article).  A direct comparison of this scenario with the

historical scenario would not be appropriate, however, because GCM skill to simulate regional

climate conditions is limited.  Thus, a GCM-control run for the historical period was also

generated.  The annual average inflows for the three scenarios are 106.6 billion cubic feet

(historical), 116.4 billion cubic feet (GCM control run for the historical period), and 150.3 billion

cubic feet (1% CO2 annual increase).  The maximum daily inflows for the three scenarios are

121,837 cubic feet per second (historical), 81,700 cubic feet per second (GCM control run for the

historical period), and 149,736 cubic feet per second (1% CO2 annual increase).  Thus, the

Canadian GCM suggests that Central California will experience wetter and more variable climate

under a CO2 increase.  Comparing the GCM-control scenario for the historical period with the

GCM CO2-increase scenario, annual average flow is expected to increase by 30% while daily

maximum flow is expected to increase by 80%.  A comparison of the GCM-control with the true

historical scenario shows that the Canadian GCM over-estimates average flows and under-
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estimates extremes.  

Tables 3 and 4 summarize the assessment results for the GCM control and CO2 increase

scenarios for various decision-forecast model combinations.  Comparing the results of the two

tables, we note that Folsom’s energy generation and revenue (based on 1995 electricity prices)

would increase by 20 to 24%, spillage would increase by 65 to 80%, and flood damage would, in

some cases, increase by more than 4.3 billion dollars. 

Comparing the Folsom DSS with the rule curves (for the analog ESP forecast case), we

note that the performance improvements due to the former decision scheme are expected to 

increase.  Specifically, the energy value difference of the two schemes amounts to 8.3% for the

historical climate, 10.5% for the GCM-controlled climate, and 13% for the CO2 increase climate. 

Neither scheme causes flood damage or minimum flow violations.  These results imply that

adaptive management schemes can mitigate the effects of climate change and improve system

performance.  By contrast, the performance of heuristic operational procedures degrades as

climate changes away from its current state.          

As in the historical assessments, using full forecast ensembles to derive adaptive

management policies also improves system response.  This improvement is most notable in flood

control (Table 4).  Using the Folsom DSS with a median analog ESP forecast sequence (1% CO2

increase scenario) would cause 4.3 billion dollars flood damage, while the same decision-forecast

scheme with the full forecast ensemble would completely avoid flood damage.  The

improvement is also significant for the other forecasting schemes.  For example, using the

Folsom DSS with the full hydrologic ESP forecast ensemble would incur 219 million dollars

flood damage compared to 4.3 billion dollars accrued by the median hydrologic ESP sequence. 

Full forecast ensembles also benefit energy generation.  In this regard, the potential

improvements range from 4.5 to 8.5%, more than twice the percent improvement for the

historical climate (both observed and GCM controlled).  Thus, the value of full forecast

ensembles increases in wetter and more variable climates.  If the GCM tendency to over-estimate

average and under-estimate extreme conditions applies to the future climate scenario, climate

change impacts would intensify and adaptive forecast-decision schemes would become even

more attractive.

The relative performance of the various model combinations is similar to that of the

historical period.  Namely, for deterministic forecasts, the GCM-conditioned ESP performs better
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than the hydrologic ESP and the analog ESP, while for full forecast ensembles, the analog ESP

performs best.     

To establish an upper performance bound, a run was also conducted with perfect

streamflow forecasts.  In this case, flood damage is prevented, energy generation attains a

maximum value, and spillage is minimized.  These results are within 3% of those obtained with

the Folsom DSS and the analog ESP forecasts.

 

8.  Conclusions

This work assesses the value of integrated forecast-decision systems for reservoir

management under historical and future climate scenarios.  Though the assessment results are

strictly valid for Folsom Lake on the American River in California, they support several general

qualitative conclusions.             

• To be useful in reservoir management, inflow forecasting models should exhibit good

unbiassness, reliability, and skill attributes.  Models that quantify forecast uncertainty,

such as models based on forecast ensembles, are most effective and can clearly improve

system performance.  Furthermore, the use of climate models can enhance hydrologic

forecasting.  However, the overall value of the forecasting scheme depends on its bias,

reliability, and skill, and simpler models (such as the analog ESP introduced in this work)

can be equally or even more effective.   

                

• Forecasting models do not necessarily improve reservoir management.  For

improvements to occur, the management process (or model) must also use forecast

information effectively. Perfect forecasts, for example, used within traditional rule curves

were found to accrue no appreciable improvements.  By contrast, adaptive decision

systems utilizing reliable forecast ensembles to determine dynamic operational policies

were found to be highly effective.

• The General Circulation Model of the Canadian Center for Climate Modeling and

Analysis predicts that further atmospheric CO2 increases will lead to a wetter and more
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variable climate in Central California.  Assessment investigations with this potential

climate scenario indicate that traditional reservoir operation rules will gradually

downgrade reservoir performance as the climate changes away from its current state. 

Furthermore, the assessments show that adaptive forecast-decision schemes can

effectively mitigate the effects of climate change and even improve reservoir response. 
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Figure 1: Folsom Forecast/Decision/Assessment Modeling Framework
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Figure 2: Analog ESP Forecast Example (April 1st)
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Figure 3: Historical Analog ESP Model Forecast Assessment
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Figure 4: Historical Analog ESP Model Forecast Assessment
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Figure 5: Folsom Turbine Characteristic Curves
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Figure 6: Best Efficiency Plant Power Function

Figure 7: Optimal Daily Energy Generation Function
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Figure 8: Flood Damage Curve
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Figure 9: An Example Run of the Folsom Decision Model
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Figure 10: Example Runs of the Folsom Assessment Model
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Figure 11: A Schematic of Folsom’s Rule Curve

Rule Curve Schematic
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Table 1:  Historical Climate Assessments Using a Rule Curve

Forecast Scheme Upstream Storage 
(1000 Acre Feet)

Energy 
(GWH)

Energy Value 
(Million $)

Spillage 
(BCF)

Min. Flow 
Violations 

(Days)

Flood 
Damage 

(Million $)
100 561.73 51.32 13.05 67 0
130 570.95 52.14 12.88 18 0
150 576.55 52.64 12.80 0 0
200 581.67 53.08 12.77 0 0

100 561.81 51.33 13.05 64 0
130 570.99 52.14 12.88 16 0
150 576.64 52.64 12.79 0 0
200 581.81 53.09 12.75 0 0

100 561.9 51.33 13.07 63 0
130 570.98 52.15 12.90 15 0
150 576.65 52.65 12.80 0 0
200 581.86 53.10 12.76 0 0

Perfect Forecasts

Operational Forecasts

Analog ESP



Table 2:  Historical Climate Assessments Using the Folsom DSS

Forecast Scheme Reliability Energy 
(GWH)

Energy Value 
(Million $)

Spillage 
(BCF)

Min. Flow 
Violations 

(Days) 

Flood 
Damage 

(Million $)
Operational Forecasts Deterministic 620.06 56.37 11.57 0.00 841.48

50% 620.20 56.42 11.79 0.00 841.48
90% 635.06 57.69 7.18 0.00 219.93

50% 621.88 56.56 11.16 0.00 841.48
90% 632.94 57.45 6.12 0.00 105.28

50% 620.33 56.47 11.99 0.00 841.48
90% 637.11 57.80 5.98 0.00 0.00

Perfect Forecasts Deterministic 662.41 60.22 4.84 0.00 0.00

Hydrologic ESP

GCM-Conditioned ESP

Analog ESP



Table 3: Assessments for a GCM-Controlled Historical Period Climate 

Reliability Energy 
(GWH)

Energy 
Value 

(Million $)

Spillage 
(BCF)

Min. Flow 
Violations 

(Days)

Max. Flood 
Damage 

(Million $)
Analog ESP Deterministic 610.50 55.67 16.85 0 0

Perfect Forecasts Deterministic 610.72 55.69 16.83 0 0

50% 653.63 59.40 16.44 0 0
90% 678.88 61.60 10.37 0 0
50% 654.47 59.46 15.98 0 0
90% 675.12 61.21 9.59 0 0
50% 651.72 59.25 16.82 0 0
90% 679.19 61.55 8.77 0 0

Perfect Forecasts Deterministic 706.26 64.15 7.79 0 0

Table 4: Assessments for a Potential Future Climate (1% Annual CO2 Increase) 

Reliability Energy 
(GWH)

Energy 
Value 

(Million $)

Spillage 
(BCF)

Min. Flow 
Violations 

(Days)

Max. Flood 
Damage 

(Million $)

Analog ESP Deterministic 745.24 67.87 27.98 0 0
Perfect Forecasts Deterministic 745.56 67.90 27.98 0 0

50% 788.26 71.56 28.67 0 4,275.20
90% 839.48 76.08 18.06 0 219.90
50% 797.83 72.40 26.78 0 4,275.20
90% 833.78 75.54 17.87 0 841.44
50% 786.41 71.43 29.22 0 4,275.20
90% 846.23 76.68 16.83 0 0.00

Perfect Forecasts Deterministic 868.92 78.77 15.09 0 0.00
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